Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice.
نویسندگان
چکیده
Neurogenesis continues in the adult forebrain subventricular zone (SVZ) and the dentate gyrus of the hippocampal formation. Degeneration of dopaminergic projections in Parkinson's disease and animals reduces, whereas ciliary neurotrophic factor (CNTF) promotes, neurogenesis. We tested whether the dopaminergic system promotes neurogenesis through CNTF. Astrocytes of the SVZ and dentate gyrus expressed CNTF and were close to dopaminergic terminals. Dopaminergic denervation in adult mice reduced CNTF mRNA by approximately 60%, whereas systemic treatment with the D2 agonist quinpirole increased CNTF mRNA in the SVZ and hippocampal formation, and in cultured astrocytes by 1.5-5 fold. The effect of quinpirole in vitro was blocked by the D2 antagonist eticlopride and did not cause astroglial proliferation or hypertrophy. Systemic quinpirole injections increased proliferation in wild-type mice by approximately 25-75% but not in CNTF-/- littermates or in the SVZ of mice infused with CNTF antibodies. Quinpirole increased the number of neuroblasts in wild-type but not in CNTF-/- littermates. Neurogenesis was reduced by approximately 20% in CNTF-/- mice, confirming the endogenous role of CNTF. Nigrostriatal denervation did not affect SVZ proliferation in CNTF-/- mice, suggesting that the dopaminergic innervation normally regulates neurogenesis through CNTF. Quinpirole acted on postsynaptic receptors as it reversed the reduced proliferation seen after dopaminergic denervation in wild-type mice. Thus, CNTF mediates dopaminergic innervation- and D2 receptor-induced neurogenesis in the adult forebrain. Because CNTF is predominantly expressed in the nervous system, this mechanism and the ability to pharmacologically modulate it have implications for Parkinson's disease and cell-replacement therapies for other disorders.
منابع مشابه
Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons.
The distinct lack of cell lines derived from the adult brain is evident. Ciliary neurotrophic factor (CNTF) triggers neurogenesis in primary culture from adult mouse hypothalamus, as detected by bromodeoxyuridine and Ki67 immunostaining. Using SV-40 T-antigen, we immortalized dividing neurons and generated clonal cell lines expressing neuropeptides and receptors involved in neuroendocrine funct...
متن کاملEndogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice.
Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in a...
متن کاملRoles of 5HT1A receptor in CNS neurogenesis and ADAM21 in spinal cord injury
ROLES OF 5HT1A RECEPTOR IN CNS NEUROGENESIS AND ADAM21 IN SPINAL CORD INJURY Sheila Ann Arnold July 21, 2011 These studies set out to identify strategies to rescue and repair the adult nervous system. First, we investigated the role of ciliary neurotrophic factor (CNTF) in SHT1A receptor-induced neurogenesis in the rodent brain. Systemic treatment with an agonist, 8-0H-DPAT, increased neurogene...
متن کاملThe Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice
In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...
متن کاملThe Effects of Dopamine Receptor Agents on Swim Stress-Induced Inhibition of Naloxone-Induced Jumping Behavior in Morphine-Dependent Mice
In the present study, interactions of dopamine receptor agonists and antagonists with water swimming stress (WSS) on naloxone-induced jumping in morphine-dependent mice were examined. Mice were rendered dependent as described in the methods section. The opioid receptor antagonist, naloxone (1 mg/kg), was injected to elicit jumping (as a withdrawal sign). The first group exposed to WSS in the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2008